22 research outputs found

    Caveats for using statistical significance tests in research assessments

    Full text link
    This paper raises concerns about the advantages of using statistical significance tests in research assessments as has recently been suggested in the debate about proper normalization procedures for citation indicators. Statistical significance tests are highly controversial and numerous criticisms have been leveled against their use. Based on examples from articles by proponents of the use statistical significance tests in research assessments, we address some of the numerous problems with such tests. The issues specifically discussed are the ritual practice of such tests, their dichotomous application in decision making, the difference between statistical and substantive significance, the implausibility of most null hypotheses, the crucial assumption of randomness, as well as the utility of standard errors and confidence intervals for inferential purposes. We argue that applying statistical significance tests and mechanically adhering to their results is highly problematic and detrimental to critical thinking. We claim that the use of such tests do not provide any advantages in relation to citation indicators, interpretations of them, or the decision making processes based upon them. On the contrary their use may be harmful. Like many other critics, we generally believe that statistical significance tests are over- and misused in the social sciences including scientometrics and we encourage a reform on these matters.Comment: Accepted version for Journal of Informetric

    A Multi-Modal Miniature Surface Forces Apparatus (Ό\muSFA) for Interfacial Science Measurements

    No full text
    Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the Surface Force Apparatus (the uSFA) that has been designed for ease of use and multi-modal capabilities with retention of the capabilities of other SFA models including accurate measurement of surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, biospecific). The small physical size of the uSFA, compared to previous SFA models, makes it portable and suitable for integration into commercially available optical and fluorescence light microscopes, as demonstrated here. The large optical path entry and exit ports make it ideal for concurrent force measurements and spectroscopy studies. Examples of the use of the uSFA in combination with surface plasmon resonance (SPR) and Raman spectroscopy measurements are presented. Due to the short working distance constraints associated with Raman spectroscopy, an interferometric technique was developed and applied for calculating the inter-surface separation distance based on Newtons rings. The introduction of the \muSFA will mark a transition in SFA usage from primarily physical characterization to concurrent physical characterization with in situ chemical and biological characterization to study interfacial phenomena, including (but not limited to) molecular adsorption, fluid flow dynamics, determination of surface species and morphology, and (bio) molecular binding kinetics

    Multimodal Miniature Surface Forces Apparatus (??SFA) for Interfacial Science Measurements

    No full text
    Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the surface forces apparatus - the ??SFA - that has been designed for ease of use and multimodal capabilities with the retention of the capabilities of other SFA models including accurate measurements of the surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, and biospecific). The small physical size of the ??SFA, compared to previous SFA models, makes it portable and suitable for integration into commercially available optical and fluorescence light microscopes, as demonstrated here. The large optical path entry and exit ports make it ideal for concurrent force measurements and spectroscopy studies. Examples of the use of the ??SFA in combination with surface plasmon resonance (SPR) and Raman spectroscopy measurements are presented. Because of the short working distance constraints associated with Raman spectroscopy, an interferometric technique was developed and applied to calculate the intersurface separation distance based on Newton's rings. The introduction of the ??SFA will mark a transition in SFA usage from primarily physical characterization to concurrent physical characterization with in situ chemical and biological characterization to study interfacial phenomena, including (but not limited to) molecular adsorption, fluid flow dynamics, the determination of surface species and morphology, and (bio)molecular binding kinetics

    A Multi-Modal Miniature Surface Forces Apparatus (Ό\muSFA) for Interfacial Science Measurements

    No full text
    Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the Surface Force Apparatus (the uSFA) that has been designed for ease of use and multi-modal capabilities with retention of the capabilities of other SFA models including accurate measurement of surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, biospecific). The small physical size of the uSFA, compared to previous SFA models, makes it portable and suitable for integration into commercially available optical and fluorescence light microscopes, as demonstrated here. The large optical path entry and exit ports make it ideal for concurrent force measurements and spectroscopy studies. Examples of the use of the uSFA in combination with surface plasmon resonance (SPR) and Raman spectroscopy measurements are presented. Due to the short working distance constraints associated with Raman spectroscopy, an interferometric technique was developed and applied for calculating the inter-surface separation distance based on Newtons rings. The introduction of the \muSFA will mark a transition in SFA usage from primarily physical characterization to concurrent physical characterization with in situ chemical and biological characterization to study interfacial phenomena, including (but not limited to) molecular adsorption, fluid flow dynamics, determination of surface species and morphology, and (bio) molecular binding kinetics
    corecore